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このレビューでは、クォーク・グルオン・プラズマ（QGP）の理論的基礎から、最近の QGP実験の現状、
そして格子 QCDによる高温物質研究の進展を概観する。主な内容は以下の通りである:
1. プラズマとは？, 2. クォークとグルオンの熱力学, 3. 相対論的重イオン衝突実験, 4. QCD相転移と相構
造, 5. 高温での強相関クォーク・グルオン・プラズマ

1 プラズマとは？

プラズマとはイオン化した荷電粒子からなる流体と定義できる [1]。太陽、稲妻、ネオンサイン、オー
ロラ、など自然界には様々な温度と粒子密度を持ったプラズマが存在する。クォーク・グルオン・プ
ラズマ（QGP）は、知られている状態のなかでは最も温度の高い色電荷を持つ粒子群からなるプラズ
マであり、1012 K 以上の温度で、年齢が 10−4 sec以前の初期宇宙に存在していたと考えられている。
また、バリオン密度が 1012 kg/cm3を越える低温かつ高密度状態では、高密度クォーク液体が実現す
ると考えられる。
高温QGPを実験室で生成し、その物性を探索しようとする本格的な実験が、2000年より米国ブルッ

クヘブン国立研究所の相対論的重イオン衝突型加速器（RHIC）[2]で行われており、2008年以降、セ
ルンの大型ハドロン衝突型加速器（LHC）[3]でも同様の研究が行われる。一方、高密度クォーク・プ
ラズマは、中性子星の中心核やクォーク星の中で実現しているかもしれない [4]。これらQGP研究の
理論・実験の詳細については、最近の教科書 [5]を参照されたい。

2 クォークとグルオンの熱力学

以下、高温・低密度のクォーク・グルオン・プラズマについて議論する。量子色力学が持つ典型的な
エネルギースケール (ΛQCD)は数百MeVなので、通常のハドロン物質が高温でQGPに転移する時の
臨界温度 Tcも同じオーダーのはずである。従って、我々がまず問題にする自由度は、Tcと同じオー
ダーかそれ以下の質量を持つ粒子、つまり、u, d, s クォーク (軽いクォーク）とグルオンということ
になる。charm, bottom, topなどの重いクォークは、臨界点近傍では軽いクォークとグルオンからな
るプラズマ中の不純物と考えることができる。
さて、そもそもハドロン物質が高温でQGPに相変化するという考えの根拠は何であろうか。低温

極限におけるQCD真空は閉じ込めとカイラル対称性の破れを具現しており、色電荷を持った粒子が
現れることはない。実際、ΛQCDにくらべて温度が十分小さいときは、相互作用に弱いパイオンガスと
いう描像がカイラル摂動論により正当化される [6]。一方、高温極限においては、QCDの漸近自由性
のゆえに、クォークやグルオンの典型的な運動エネルギー (温度 T のオーダー）に比べて相互作用エ
ネルギー (αsT のオーダー）が無視できるので、ほぼ自由に運動するクォークとグルオンのガスという
描像が正当化される [7]。（これには少し注意が必要で、デバイ遮蔽により相互作用が短距離力になる
ことも、自由ガスを正当化するには必要な要件となる。後述するように、カラー電気相互作用は摂動
論の範囲でデバイ遮蔽が容易に示せるが、カラー磁気相互作用の遮蔽は非摂動論的で自明ではない。)
結局、低温極限と高温極限で、我々はQCDが異なる相をとることを知っている。従って、どこか

中間の温度でなんらかの相変化（厳密な意味での相転移でないかもしれない）をおこすと予想できる。
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図 1: ε/T 4の温度依存性を、u,d,sを含む (2+1)-flavor QCDでの格子計算をもとにプロットした図 [9]。スタガー
ドフェルミオンと asqtad型の改良格子作用が採用されている。格子サイズとして、Nt×N3

s = 4× (123− 163)
と 6 × (123 − 203) の場合が示されている。ストレンジクォーク質量 ms は、ほぼ物理的質量と同じで、u, d
クォーク質量はmud ' 0.1ms が採用されている。これはmπ/mρ ' 0.3に対応する。次元スケールを決めるの
には、Sommer scale r1 = 0.138(7)(4) fm が採用されている。T ' 200 MeV での格子間隔は、 Nt = 4 (6)に
対して a = 0.247 (0.165) fm である。

これがどのようなタイプの相変化なのか？相変化の起こる典型的温度は？もし厳密な意味での相転移
であればその次数は？など、さまざまな疑問が直ちに湧いてくる。これは、本質的に非摂動的な問題
であり、最終的には格子QCDの数値シミュレーションによって答えを得るしかない。
格子QCDの結果を示す前に、直感的理解の助けとして、系のエネルギー密度の温度依存性や転移

温度をトイモデルを用いて考えてみよう。簡単のため、massless 2-flavor （masslessの u, dクォーク
とグルオンのみ）を考えると、低温での熱励起には π+, π−, π0の３種のmassless pionが主要な寄与
をする。一方、高温では、u, d クォークとグルオンが熱励起をになう。それぞれの自由度 (spin, color,
flavorなど）を考慮すると系のエネルギー密度（=単位体積あたりの内部エネルギー= ε = E/V）は
黒体輻射の式より

ε = deff
π2

90
T 4, deff =

{
3 (T → 0)
37 (T →∞)

(1)

となる。ここで、高温側の有効自由度は、37 = 8×2 (gluon)+3×2×2×2×7/8 (quark)と勘定される。
つまり、低温から高温への相変化に伴い、ハドロンの内部自由度が開放され、黒体輻射に効く有効自
由度が一桁ジャンプするというわけである。またこの相変化がおこる典型的温度は、T ∼ ΛQCD ∼ 200
MeV と期待される。
さて、実際の格子QCDシミュレーションデータを見てみよう。格子定数 a、空間格子サイズ V、温

度 T、ゼロ化学ポテンシャルでの分配関数は、

Z(T ; a, V ) = Tr
[
e−ĤQCD/T

]
=

∫
[dU ] F (U) e−Sg(U), (2)

で与えられる。ここで、U はリンク変数でカラー SU(3)の群要素、F (U)は分配関数への動的クォー
クからの寄与である。最終的な物理量を求めるには、連続極限 (a → 0) と熱力学極限 (V →∞)をと
らねばならない。



図 2: 最近のスタガードフェルミオンを用いた (2+1)-flavor QCDにおける “擬”臨界温度のまとめ。最下段の
値には、 χm/T 2 から求められた他の値との比較のため 9 MeVが加えられている [10]。

図１に示されているのは、格子上で計算された ε/T 4である。 トイモデルで期待したように大きな
有効自由度のジャンプが T ∼ 200MeV近傍でおこることがわかる。また高温での黒体輻射からのズレ
は、クォークとグルオンの相互作用の結果と解釈できる。しかしながら定量的にこのズレを QCD結
合定数 gの摂動論で評価しようとすると困難に直面することを後述する [8]。
図 2には、(2+1)-flavor QCDにおける”擬”臨界温度 Tpcの最近の結果をまとめている。後述するよ

うに現実的なクォーク質量では、相変化は自由エネルギーが特異性を持たないクロスオーバーである
可能性が高い。この場合でも、カイラル秩序変数 q̄qのゆらぎのピーク位置をもって “擬”臨界温度を
定義し、相変化がおこる典型的温度の目安とするのが便利である。この擬臨界温度の値は図からもわ
かるように Tpc=160-200 MeVに絞りこまれてきている。
すでに触れたように、たとえ臨界点を越えてもQGPの性質はナイーブな摂動論では扱えない。こ

れには２つの意味が含蓄されている。一つは、クォークやグルオンが持つ典型的な運動エネルギーが
温度の３倍程度なので、数百MeVの温度では結合定数 gは 2程度と決して小さいとは言えず、摂動
の高次の寄与が無視できないほど大きくなるという問題。もう一つは、摂動の高次まで計算すると、
磁気的グルオンによる赤外発散により摂動論が破綻するという本質的問題である。これらについては
後述するが、いずれも QGPは強相関のプラズマであることを示唆しており、格子 QCD数値シミュ
レーションに加えて、なんらかの解析的非摂動手法による深い理解が望まれている。
以上の前書きを念頭にQGP研究の目標を

I. クォーク・グルオン・プラズマの実験室での生成

II. 高温での非アーベル型プラズマの物性研究

III. ハドロン物質の相転移と真空の構造変化の解明

の３つにまとめることができるであろう。RHICや LHCでの相対論的重イオン衝突実験、格子QCD
シミュレーション、様々な解析的理論手法は、この目標に至る重要なてがかりを与えてくれる。



図 3: 宇宙背景輻射の解析による宇宙初期探索と相対論的重イオン衝突の解析によるクォーク・グルオン・プ
ラズマ探索の比較 [5]。

3 相対論的重イオン衝突実験

過去数年の膨大なRHICデータの蓄積と理論の進展により（藤井氏、板倉氏、室谷氏のレビューを
参照のこと）、以下のような解析の流れができつつある：
(Step 1) 衝突初期 QCD過程の解析計算や熱平衡化後の状態方程式の格子計算→ (Step 2) これらを
インプットにした相対論的流体力学シミュレーション→ (Step 3) 実験との比較→ (Step 4) 理論への
フィードバック→ (Step 1)へもどる。
さて、RHICで QGPが生成されているかどうかの判定を行うためのチェックリストと、現状での

答えをまとめてみよう。

Q1: 十分なエネルギー密度が蓄えられたか？

A1: 4-5 GeV/fm3のエネルギー密度が達成されている。これは、生成粒子数、ジェット抑制、J/ψ抑
制、などのデータから間接的にわかる。

Q2: 十分な大きさの火の玉が形成されたか？

A2: (10 fm)3 程度の大きさの火の玉ができている。これは Hanbury-Brown-Twiss干渉実験などの
フェムトスコピー解析からわかる。

Q3: 衝突エネルギーが熱に転化しているか？

A3: 異なる質量を持つ粒子数生成比は、熱分布からの予想で矛盾なく説明できる。

Q4: 局所熱平衡状態にあるか？

A4: 楕円型フローの存在や、相対論的流体力学の成功は、強く結合し局所熱平衡にあるプラズマが
衝突後の早い段階 (t ∼ 0.6fm)に達成されていることを示唆している。



 

 

 

 

 

 

 

 

 

 

 

 

 

 

図 4: クエンチ近似で計算された (a) J/Ψと (b) ηcの高温でのスペクトル関数。チャーモニュームの虚時間相
関関数の格子 QCDデータに最大エントロピー法を用いることでスペクトル関数が得られる [14]。

以上のチェックリストがクリアーされれば、次の段階（QGPの詳細な物性論）に移ることができ
る。そこでの主要なテーマとしては、

1. プラズマ中の粒子透過阻止能

2. プラズマ遮蔽と相転移

3. プラズマ中の粒子相関

4. 臨界揺らぎ

5. 熱化のメカニズム

6. AdS/QGP

などがあげられる。強相関プラズマの持つ特異な性質をこれらの研究から暴きだせればとても面白い。
ひとつの例として、松井-Satz [11]、橋本-広瀬-神吉-宮村 [12] らにより考察されたプラズマ中での

J/Ψ抑制現象を考えてみよう。当初は、重いクォーク間の閉じ込めポテンシャルがデバイ遮蔽されるた
めに、J/Ψなどチャーモニューム束縛状態はプラズマ中で存在不可能であり、逆にレプトン対崩壊で
見た J/Ψピークの抑制現象がQGP生成の証拠になると考えられた。しかしながら、チャームがQGP
と強く相互作用している可能性のある強相関プラズマ中で、この予想が果たして正しいであろうか？
実際、梅田-片山-宮村-松古 [13]や浅川-初田 [14]により格子計算で示されたように、J/Ψは (1.5-2)Tc

程度まで束縛状態としてプラズマ中で生き残る可能性がある。（図 4参照。）デバイ遮蔽を受けた湯川
型ポテンシャルという弱結合近似に基づいた考え方が強相関プラズマ中では破綻するかもしれないの
である。

QGPの強相関性を示唆する別のタイプの格子計算が中村-酒井 [15] により提出された。彼らは、グ
ルオンプラズマの粘性の格子計算を行い、摂動論で示唆されるより大幅に小さいズレ粘性が、臨界点



図 5: クエンチ近似で計算されたグルオン・プラズマのズレ粘性（η)とエントロピー密度 (s)の比。白丸は標
準的なウイルソンゲージ作用、黒丸は改良されたゲージ作用を用いた結果。実線と点線は、有限温度での摂動
論を用いて計算された値で、異なる繰り込み点に対応する [15]。 KSS boundは、AdS/CFT対応を用いて計算
された、N=4超対称 Yang-Mills理論の強結合領域の漸近解: η/s = 1/(4π)。

より高温の広い温度領域で実現されている可能性を指摘した。粘性が小さいということは、プラズマ
が完全流体に近いことを意味する。これは、RHICでの重イオン衝突の時空発展の記述に成功をおさ
めてきた相対論的完全流体力学に対してなんらかの正当化をもたらすかもしれない。
以上のような強相関プラズマとそれに付随する現象は、いずれもまだ研究の初期段階にすぎず、独

立な格子QCDシミュレーションによるチェック、強相関の背景となる透徹した物理的理解など、多く
の明らかにすべき課題がある。

4 QCD相転移と相構造

温度・バリオン化学ポテンシャル平面におけるQCDの相構造の概要を図 6に示してある。H2Oの
基本的三態が、水、蒸気、氷であるように、QCDの基本的三態は、ハドロン相（低温低密度）、QGP
相（高温高密度）、カラー超伝導相（低温高密度）である。それらの相境界の位置や相変化の正確な振
る舞いは、格子計算が可能な低密度領域を除いて、いまだ厳密には理解されていない。図に示したの
は、ハドロン相とQGP相、QGP相とカラー超伝導相がそれぞれ１次相転移線で区切られている場合
の相図である。現実的なクォーク質量の世界では、図にあるように、高温側と低温側にそれぞれ臨界
点が存在する可能性が示唆されている。高温側の臨界点（AY(浅川-矢崎)臨界点 [16]）が存在すると、
ハドロン相とQGP相はスムースに繋がっていることになる。また低温側の臨界点（HTYB(初田-橘-
山本-Baym) 臨界点 [17]）が存在すると、ハドロン相はカラー超伝導相とも連続的に繋がっているこ
とになる。AY臨界点の位置の特定は、現在の格子 QCD計算におけるチャレンジングな問題として
盛んに議論されている。
さて、直ちに以下のような疑問が湧いてこよう。QCDの三態というが、実際にはそれぞれはどの

ような内部状態で特徴付けられているのか？対称性による相の分類や秩序変数の導入は可能か？相転
移は具体的にはどのように記述され、その次数はどのように決まるのか？など。以下、それらの疑問
に答えていこう。



図 6: 現実のクォーク質量の場合の、温度-化学ポテンシャル平面でのQCDの相構造の候補の一つ。χSB, QGP,
CSC は、それぞれ、カイラル対称性の破れたハドロン相、クォーク・グルオン・プラズマ相、カラー超伝導
相、を意味する。図の実線は一次相転移線。その終点として、２次相転移点（臨界点）が存在する可能性があ
る [16, 17]。図のように臨界点が２つあると、χSB, QGP, CSCの３相は連続的に繋がっていることになる。

4.1 相転移次数

まずは相転移の一般論の復習からはじめよう。分配関数 Zは圧力 P を用いて以下のようにかける。

Z = exp[P (K1,K2, · · ·)V/T ] (3)

Ki = T, µ, mud,ms, · · · (4)

Kiは任意の外部パラメーターで、温度、化学ポテンシャル、クォーク質量などを含む。 多くの現実
的な系では、P はKiについて連続関数であるので、そのような場合に限定して以下では議論する。
まず、n次相転移を、P (Ki)の最初の非解析的振る舞いが、K についての n次微分 (∂/∂K)nP か

らはじまる場合として定義しよう2。例えば、１次相転移の典型例は、P (T )は連続関数だが、エント
ロピー密度 s(T ) = (∂/∂T )P (T )がある温度 T = Tcで不連続になる場合である。また、２次相転移の
典型例は、P (T ), s(T )は連続関数であるが、比熱 cV /T = (∂/∂T )s(T ) = (∂/∂T )2P (T )がある温度
T = Tcで発散する場合である。

P (Ki)が解析関数でその任意の微分に特異性が現れない場合は、当然ながら数学的な意味での相転
移は定義できないが、パラメーターKの変化に伴い異なる特徴を持つ相の間を連続的に移りかわる場
合を広い意味でのクロスオーバーと呼ぶ。これから議論する有限温度・ゼロ化学ポテンシャルでのハ
ドロン相からQGP相への相変化はまさしくこの例になっている。

4.2 有限サイズスケーリング

話を簡単にするために、化学ポテンシャルがゼロの QCDを考え、格子 QCDシミュレーションで
どのように相転移の次数と臨界温度（または擬臨界温度）が導かれるかを見る。格子 QCDでは常に
有限サイズの箱（体積 V )のなかでシミュレーションが行われる。V が有限である限り、P (K)には特

2エーレンフェストの定義では、n次微分の不連続性により相転移次数が定義されたが、ここでは n次微分の発散なども
含む一般的な非解析性で定義している。



図 7: 左: (2+1)-flavor QCDにおけるカイラル感受率を格子上での結合定数 6/g2 の関数として、３通りの空
間サイズ V/a3 = 183, 243, 323でプロットしたもの。staut改良型スタガードフェルミオン作用が用いられてお
り、クォーク質量は m

K
/mπ=3.689と f

K
/mπ=1.185 を再現するような現実的な値が用いられている。右: 連

続極限 (a → 0)での、カイラル感受率の逆数の体積依存性。点線（破線）は、１次（２次）相転移の場合のス
ケーリング [18]。

異性は現れないが、V を大きくしていったときの P (K)またはその微分の振る舞いから、熱力学極限
(V → ∞)での相転移の有無や次数を判定することができる。これを有限サイズスケーリングの方法
という。例えば、カイラル感受率（圧力 P の軽いクォーク質量mudに関する２階微分）を考えると、
その極大値について以下の近似的スケーリングが成立することが容易にわかる：

χm =
∂2P

∂m2
ud

∼





V 1st order
V 2/3 2nd order
V 0 crossover

(5)

図 7の左側には、無次元化したカイラル感受率 χm/T 2の極大値付近をが格子定数 aで無次元化し
た体積について V/a3 = 183, 243, 323の場合に示されている。(2+1)-flavor QCDで、u, d, sクォーク
質量は現実の値に設定されている [18]。極大値の値が体積にほとんど依存しないので、現実の有限温
度QCDの相変化はクロスオーバーの可能性が高いことがわかる。この結論をさらに強固にするため
に、図 7の右側には、∆χ ( = χm(T )− χm(0)のピーク位置) について、繰り込み群不変な組み合わ
せ T 4/(m2

ud∆χ)をつくり、それを無次元化された体積の逆数 1/(T 3
pcV )の関数としてプロットしてあ

る。この図では連続極限への外挿 (a → 0) はすでに行われている。Tpcは、感受率のピーク位置に対
応する温度である。シミュレーションで得られたカイラル感受率の極大値の逆数は、熱力学極限で有
限値に近づき、１次相転移や２次相転移の場合の予想と明らかに振る舞いが異なる。これは、（少な
くともスタガードフェルミオン作用を用いた場合）、有限温度・ゼロ化学ポテンシャルでのハドロン
相からQGP相への転移はクロスオーバーであることを強く支持する。



4.3 “擬”臨界温度

相変化がクロスオーバーのときに、感受率は狭い温度領域で急激に変化しているのは偶然ではない。
実際、軽いクォーク質量ｍud をゼロに近づけると、msの値によって、１次または２次の相転移にな
ることがわかっているので、現実の世界の “急激なクロスオーバー”は、mud = 0なる仮想世界におけ
る真の相転移の存在を反映しているのである。このような場合、“相境界”を感受率のピーク位置に対
応する温度で定義してもよい。これが、擬臨界温度 Tpcと呼ばれるものである。この値を現実のQCD
において決定することは、理論的にも、実験との関連においても重要である。
ここで、擬臨界温度 Tpcの決定にかかわる少し細かい点を指摘しておかねばならない。まず、どの

感受率を用いて Tpcを定義するかによって、一般にその値は違うという事。例えば、χm = (∂/∂m)2P
で決めた Tpcと χT = (∂/∂T )2P で決めたそれとは同じ値である必要はない。相転移があるときには、
P (Ki)ははっきりした二相境界超曲面をパラメーター空間内にもつので、どの感受率で見ても臨界温
度は同じであるが、クロスオーバーでは相境界がぼやけているからである。更に、同じ感受率をとっ
たとしても、例えば χmと χm/T 2のピーク位置は当然ながら異なる。これらの問題のため、異なるグ
ループによる Tpcの格子計算結果を比較するときは注意が必要である。図 2では、無次元カイラル感
受率 χm/T 2を用いた Tpcをまとめてある。
格子シミュレーションでは、無次元量しか計算できないので、TpcをMeV単位で求めるためには、

次元をもつ物理量Mexpをひとつインプットにしなければならない。このため、連続極限での Tpcは
以下のような手続きで求められている：

Tpc =
(

Tpc(a)
a−1

)

a→0

(
a−1

M(a)

)

a→0

Mexp (6)

物理量M としてどのようなものを採用するかによって、本来は Tpcの最終結果は変わらないはずで
あるが、a → 0極限への収束性の違いによって、Tpcの値が 10%程度変動しうるのが現状である。図
2には、それぞれの格子計算のインプットの物理量についてもまとめてある。

4.4 秩序変数と相構造

さて、ここまではハドロン相とQGP相のミクロな構造や対称性に依存しない一般的な議論をして
きた。以下では、それぞれの相が対称性とその自発的破れという観点から特徴付けられることをみる。
現実のQCDでは、mu, md, msが有限でかつ値がそれぞれ異なるため、厳密な対称性はカラー SU(3)
とバリオン数保存に伴う U(1)のみである。しかしながら、クォーク質量が極限的な値をとる場合に
は、それ以外の厳密な対称性が存在する場合がある。以下では簡単のため、mu = md ≡ mudとして
４通りの極限を考える：

(mud, ms) =





(∞,∞) Nf = 0 (no quarks),
(∞, 0) Nf = 1 (massless 1 flavor),
(0,∞) Nf = 2 (massless 2 flavors),
(0, 0) Nf = 3 (massless 3 flavors).

(7)

この４つの場合を正方形の４隅として、クォーク質量に関するQCD相図を書いたのが図 8である。
表１には、それぞれの極限の場合に QCDが持つ対称性と有限温度相転移の次数が示されている。

相転移次数は、ギンツブルグ-ランダウ理論および臨界点近傍での揺らぎに関する繰り込み群に基礎を
おいた予想であるが、格子QCD数値シミュレーションによって数値的傍証がある（特に、Nf = 0で
は精密な有限サイズスケーリング解析が行われた [19]）。ギンツブルグ-ランダウ理論では、まず系の



図 8: mud-ms面内における有限温度QCDの相図。黒丸が現実世界の候補である。TPCは３重臨界点（３本
の２次相転移線が交わる点（図ではmud の負側の２次相転移線は書いていない）。

表 1: ギンツブルグ-ランダウ理論および臨界点近傍での繰り込み群に基礎をおいた、様々な Nf における有限
温度相転移に対する予想。高温（低温）で実現される対称性も挙げてある。但し、有限温度で破れない対称性、
U(1)B と SU(3)cは書いていない。Nf = 1, 2, 3では、U(1)Aが軸性異常のために温度によらずあらわに破れて
いることが、相転移次数の決定に重要な役割を果たしている。

Nf 高温での対称性 低温での対称性 有限温度相転移とその次数
0 無し Z(3)c １次相転移
1 無し 無し 相転移なし
2 O(4) O(3) ２次相転移
≥ 3 SU(Nf )L × SU(Nf )R SU(Nf )L+R １次相転移

対称性Gと秩序変数O（対称性変換のもとで不変でない量）を決める。次にミクロ変数で書かれたO
に対する補助場 ϕを導入して、QCDの有限温度分配関数 ZQCD(K)を補助場 ϕで書き直す。

ZQCD(K) =
∫

[dϕ]e−
∫

d3xLeff(ϕ(x);K). (8)

S(ϕ;K) =
∫

d3x Leff(ϕ(x);K)はG不変で通常ランダウ汎関数と呼ばれる。このような書き換えを実
行することは、QCDを解くことと同等で一般には不可能である。しかし、系が２次相転移や弱い１次
相転移、またはその近傍でのクロスオーバーを起こすことがわかっているときは、臨界点近傍でϕが系
に典型的なスケール（例えば臨界温度 Tc）に比べて小さく、また長波長の揺らぎが重要になる領域が
出現するので、ϕと∇ϕに関するテーラー展開を行うことができる3。テーラー展開の各項の形は、対
称性の要請から制限を受ける。ギンツブルグ-ランダウ理論では、S(ϕ; K)を最小化する ϕGL(x, a(K))
を求めることで、実現される状態を係数 a(K)の関数として分類する。また、相境界のまわりでの長
波長揺らぎを (8)式に基づいて系統的に取り込んでいく操作が繰り込み群に対応する。

3ln ϕなどの非解析的な項が現れない理由は、ランダウ汎関数が短波長モードを積分（＝粗視化）して得られたWilson
流の有効作用と同定されるべきものであることに由来する。この場合、粗視化の過程で常に赤外カットオフがはいっている
ため、有効理論には ϕについての特異性を持つ項はあらわれない。



Nf = 0の場合を例にとれば、関係する対称性は、SU(3)cの中心 (center)である Z(3)対称性であ
り、秩序変数はクォークの閉じ込め-非閉じ込めを判別するポリアコフ線

1
3
trP exp

[
ig

∫ 1/T

0
A4(τ,x)dτ

]
(9)

となる。これに対応する補助場 L(x)を用いて、Z(3)不変なランダウ汎関数は [20]

Seff(L) '
∫

d3x

[
1
2
(∇L∗)(∇L) + V (L)

]
, (10)

V (L) =
a

2
L∗L− c

3
Re(L3) +

b

4
(L∗L)2, (11)

となる。L3のような Z(3)不変項の存在により、有限温度相転移が１次になることが直ちにわかる。
(カラー SU(2)の場合には、L3 は許されないので、相転移は２次になる）。クォーク質量の効果は、
−hLなる外場項として V (L)に現れる。十分 hが大きい（＝十分クォーク質量が軽い）場合には、１
次相転移はなまされてクロスオーバーになる。
もうひとつの例として、Nf = 3の場合をあげよう。このときに秩序変数は、カイラル対称性の破れ

を判別するカイラル凝縮

q̄j
Rqi

L (12)

である。（i, jはフレーバーの足。）対応する補助場Φij(x)を用いて、SU(3)L×SU(3)R不変なランダ
ウ汎関数は [21]

Seff(L) '
∫

d3x

[
1
2
(∇Φ∗)(∇Φ) + V (Φ)

]
, (13)

V (Φ) =
a

2
tr Φ†Φ +

b1

4!

(
tr Φ†Φ

)2
+

b2

4!
tr

(
Φ†Φ

)2 − c

2

(
detΦ + detΦ†

)
(14)

となる。detΦのような軸性異常起源の３次項の存在により、有限温度相転移が１次になることが直ち
にわかる。(フレーバー SU(2)の場合には、detΦは２次項となり、相転移は２次になる）。クォーク
質量の効果は、−h

2 tr(Φ + Φ†) なる外場項として V (L)に現れる。この場合には、大きな hは大きな
クォーク質量に対応し、十分大きな hに対して１次相転移はなまされてクロスオーバーになる。

5 高温での強相関クォーク・グルオン・プラズマ

QGP中の基本的な物理量を考えてみよう。まず、温度が十分高いので、クォークとグルオンは相対
論的である。この時の、粒子数密度 nと平均粒子間距離 d、デバイ遮蔽長 λE、磁気遮蔽長 λMのオー
ダーは、

n ∼ T 3, d ∼ 1/T, λE ∼ 1/(gT ), λM ∼ 1/(g2T ) (15)

である。 しばしば、d, λE, λM はハードスケール、ソフトスケール、スーパーソフトスケールと呼ば
れる。デバイ遮蔽長内にある粒子数ND（デバイ数）は

ND =
4π

3
λ3

Dn ∼ (2/g)3 (16)

であり、ND À 1でなければ、デバイ遮蔽長の近似式 1/(gT )が正当化されない。プラズマ中での相互
作用の強さの目安となるパラメーターは、クーロン結合パラメーターと呼ばれる [22]：

Γ =
Coulomb energy
kinetic energy

∼ αsT

T
=

g2

4π
(17)



図 9: 左： Nf = 4の場合に 2-ループの β関数を用いて得られた αs(κ)の温度依存性。繰り込み点 κは、松原
振動数のオーダーに選ばれている、κ = 2πT。右：実線は、摂動論による P (T )と g = 0の場合 (自由ガス）の
圧力との比 Rを、gn (n = 2, 3, 4, 5)まで計算された P (T )の場合に書いたもの。

QGPが超高温 T À Tpcにあれば、漸近自由性により、g ¿ 1なので、d ¿ λE ¿ λMなるスケー
ル分離がおこり、ND À 1, Γ ¿ 1となる。一方、T がせいぜい Tpcの数因子倍だけ大きいような状況
では（これが RHICや LHCで到達できる最高温度であり、また格子 QCD で精密に計算されている
温度領域でもある）、図 9（左）からわかるように αs = 0.2− 0.4 (g ∼ 2) であり、スケール分離はお
こらず、摂動論による予言や弱く相互作用するプラズマという描像は破綻する。

5.1 漸近展開としての有限温度摂動論

上述のことをより具体的にみるために、摂動論で計算されたQGPの圧力の表式を眺めてみよう：

P (T ) =
8π2

45
T 4

[
c0 + c2 ḡ2 + c3 ḡ3 + c4 ḡ4 + c5 ḡ5

]
· · · . (18)

ここで κは繰り込みスケールであり、κ = 2πT と選んだ。また ḡ2 ≡ g2/4π2 = αs/πである。有限
温度の摂動論では、デバイ遮蔽を正しく考慮するためにリング型総和が必要で、そのため摂動級数は
gの偶数冪だけではなく gの奇数冪および ln g型の対数項を含む漸近展開となる。O(g5)までの係数
c1−5を具体的に書くと [23]：

c0 = 1 +
21
32

Nf , (19)

c2 = −15
4

(1 +
5
12

Nf ), (20)

c3 = 30(1 +
1
6
Nf )3/2, (21)

c4 = 237.2 + 15.97Nf − 0.4150N2
f +

135
2

(1 +
1
6
Nf ) ln

[
ḡ2 (1 +

1
6
Nf )

]
, (22)

c5 = (1 +
1
6
Nf )1/2

[
−799.2− 21.96Nf − 1.926N2

f

]
. (23)

となる。この式から直ちにわかることは、各項の係数が振動しながら急激に増加することであり、漸近
級数の典型的な振る舞いをしている。このために、有限次で切った展開結果が信頼できるのは、αs < 0.1



に限られ、温度で言えば、100 GeV以上でなければナイーブな摂動論は信頼できないことになる (図
9の右参照)。より改良された摂動論や総和法を用いてこの悪い漸近展開を改良する試みがいくつかな
されているが、十分納得のいく理論体系はまだ無い。

5.2 赤外発散と磁気遮蔽の問題

実は、QCDにおいては、摂動級数の振る舞いが単に良くないという以上の本質的な困難があるこ
とが知られている。圧力の計算で言えば、このことは O(gn≥6)の係数 cn≥6が赤外発散し、摂動論が
破綻するということに端的にあらわれる [24]。その起源は、グルオン伝播関数の磁気成分

〈Ai(x)Aj(y)〉 ∼ exp (−|x− y|/λM) (24)

における磁気遮蔽長 λMにある。この逆数に関する摂動展開 λ−1
M = (A1g + A2g

2 + · · ·)T においては、
デバイ遮蔽の場合と異なり初項がゼロ (A1 = 0)となるうえに、次項A2を計算しようと赤外発散して
しまう。結局、結合定数の漸近展開としての有限温度の摂動論は、ある次数以上では意味を持たなく
なってしまう。その起源は、摂動の高次で、より長波長の熱励起の寄与が関与してきて、どんなに高
温でも、QCDの非摂動領域に突入してしまうことにある。
このことは、高温での次元縮約をQCDについて考えればより理解しやすい。高温では、経路積分

の虚時間方向のサイズ 1/T が小さくなるので、虚時間方向のゼロモードに関する３次元有効理論を形
式的に構築できる。この３次元有効理論は、カラー随伴表現のスカラー場 φ（A4 のゼロモードに対
応）が、Aiのゼロモードに対応する３次元ゲージ場と結合したものになる。このときに３次元ゲージ
結合定数 g3は、４次元ゲージ結合定数 gと g2

3 = g2T なる関係にある。ゼロモード以外の積分（フェ
ルミオンも含む）は φのポテンシャル項 V (φ)をもたらすが、高温では V ′′(0) > 0となることがわか
るので、系はどんなに高温でも閉じ込め相にある。つまり、摂動論で見られた磁気遮蔽と関係する非
摂動現象は、高温３次元有効理論の閉じ込め現象と関係した本質的問題なのである。
十分高温であれば、ハードスケール、ソフトスケール、スーパーソフトスケールの分離ができるの

で、ハードとソフトは摂動論で計算し、スーパーソフトは、格子QCDシミュレーションなどで計算
するという方針を立てることもできる [25]：

P (T )
T 4

= phard(g;λE) + psoft(g; λE, λM)g3 + psuper−soft(g; λM)g6. (25)

ここで、 phardは、k > λ−1
E にある運動量からの寄与、psoftは、λ−1

E > k > λ−1
M にある運動量からの

寄与、psuper−soft は、λ−1
M > k にある運動量からの寄与である。最初の２つは、赤外カットオフが導入

されたために赤外発散はあらわれない。psuper−softは、摂動論では計算できず、格子QCDシミュレー
ションなどの手法で計算する必要がある。最終結果は、もちろん λE,Mによらないはずである。しか
しながら温度が Tpcの数因子倍までの時は、このようなスケール分離はそもそも成り立たないので、
P (T )をそのまま非摂動的に計算するしかない。

5.3 QGP中でのハドロン的励起

QGP中での非摂動効果として最近注目を浴びているものに、エネルギー運動量テンソルの相関関数
から引き出されるズレ粘性 [15]、カレント演算子の相関関数から引き出されるハドロン的励起のべー
テ-サルペーター波動関数 [13]やスペクトル関数 [14]がある。前者は、プラズマの流体的振る舞いが
完全流体に近いかどうか（強結合プラズマかどうか）の指標になることはすでに図 5に関連して 3節
で述べた。後者は、理論的には、強相関プラズマ中でハドロン的な励起モードが生き残るのではない
かという初田-国広およびDeTar [26]の古い指摘に関係している（最近の理論のレビューとしては [27]
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図 10: RHICでの金金衝突における、J/Ψの生き残り確率 SJ/Ψ（pp衝突の重ね合わせとして J/Ψが生成さ
れたとした生成量から、重陽子-金衝突でも観測される通常の J/Ψ抑制を考慮して、異常抑制の割合に直した物
理量）。横軸は、衝突に関与する核子数Npart であり、それが大きいほど中心衝突（小さいインパクトパラメー
ターの衝突）に近い。J/Ψが QGP中で溶解する温度 TJ/Ψ, J/Ψの励起状態から落ちてくる J/Ψの割合 fFD、
励起状態の溶解温度 Tχ が理論曲線のパラメーターであるが、TJ/Ψ は、実験データの 150 < Npart < 200での
折れ曲がりと強く相関し、他のパラメーターの値によらず狭い範囲に決まってしまう。

を参照のこと）。実験的には、プラズマからのレプトン対や光子対放出の観測によりプラズマ内部の
詳細な情報を探る物理と密接に関係している。
ここでは一つの例として、RHICでの金金衝突の J/Ψ生成における J/Ψの生き残り確率 SJ/Ψ の

Npart(衝突関与粒子数）依存性を、中心ラピディティ（定義については藤井氏のレビュー参照）の場
合に実験と理論で比較した図 10に挙げておく。Npartが大きい（小さい）ほど中心（周辺）衝突に近
く、プラズマのサイズや温度が高い（低い）。理論曲線は、平野氏によるフル 3D相対論的流体力学方
程式の数値解が与えるプラズマの時空発展の背景のもとで、J/Ψが直線軌跡で伝播していく場合の結
果である。

J/Ψがプラズマ中で溶解する温度 TJ/Ψをパラメーターとし、Tpc = 170 MeVとして比較がなされ
ている。150 < Npart < 200に見られる実験データの折れ曲がりを反映して、実験から TJ/Ψ/Tpc ∼ 2
に決まってしまうことは、格子QCDが同様の溶解温度を予言していることと関係して注目に値する
[28]。J/Ψの軌跡をランジュバン方程式を解いて決める事、J/Ψが TJ/Ψの前後で連続的に溶解する
効果を考える事、TJ/Ψの pt依存性の効果（夏梅氏の指摘による）、など、様々な理論的改良が考えら
れるが、ここで強調したいのは、実験と理論の双方の進歩により、このような定量的議論が可能にな
りつつあるということである。

6 まとめ

クォーク・グルオン・プラズマの研究は、理論的にも実験的にも、過去 5年間で飛躍的にすすんだ。
理論的には、格子QCDシミュレーションの進展が著しく、実験的には大量のデータが RHICからも
たらされている。理論と実験を繋ぐ解析手法としての相対論的流体力学も急速な進歩を遂げ、完全流
体であればフル 3Dシミュレーションが可能になった。



これらの研究から浮かび上がりつつあるのは、QGPが単純な自由ガスとは異なり、強い相関を持
つプラズマであるという事実である（藤井氏、室谷氏、板倉氏のレビューを参照のこと）。また、こ
の強相関プラズマについての理解を得る新しい手法として、AdS/CFT対応に基づく研究が進展して
いる（今村氏、杉本氏、橘氏、夏梅氏のレビューを参照のこと）。遅くとも数年後には、LHCにおい
て、より高エネルギーでの重イオン衝突実験が始まり、実験室で最高温・最高エネルギー密度のプラ
ズマが実現されると期待される。QGPの全容解明に向けて、今回の研究会のような分野を越えた研
究者の交流が今後ますます重要になってくることは疑いない。
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